Medina Cruz D, Mi G, Webster TJ (2018) Synthesis and characterization of biogenic selenium
nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-
resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J
Biomed Mater Res A 106(5):1400–1412
Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of
antibacterial activity of copper oxide nanoparticles. RSC Adv 5(16):12293–12299
Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. In: Virulence mechanisms of
bacterial pathogens. Wiley, Hoboken, pp 481–511
Nguyen NYT, Grelling N, Wetteland CL, Rosario R, Liu H (2018) Antimicrobial activities and
mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and
biofilms. Sci Rep 8(1):1–23
Niskanen J, Shan J, Tenhu H, Jiang H, Kauppinen E, Barranco V, Pico F, Yliniemi K, Kontturi K
(2010) Synthesis of copolymer-stabilized silver nanoparticles for coating materials. Colloid
Polym Sci 288:543–553
O’Neill J (2018) Tackling drug-resistant infections globally: final report and recommendations.
2016. HM Government and Welcome Trust: UK. https://amr-review.org/sites/default/files/160
525_Final%20paper_with%20cover.pdf. Accessed 3 Dec 2020
Ostadhossein F, Misra SK, Tripathi I, Kravchuk V, Vulugundam G, LoBato D, Selmic LE, Pan D
(2018) Dual purpose hafnium oxide nanoparticles offer imaging Streptococcus mutans dental
biofilm and fight it in vivo via a drug free approach. Biomaterials 181:252–267
Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimi-
crobial study. Sci Technol Adv Mater 9(3):035004
Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP,
Joy DC, Allison MR, Brown SD (2010) Effects of engineered cerium oxide nanoparticles on
bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989
Piddock LJ (2006) Multidrug-resistance efflux pumps? Not just for resistance. Nat Rev Microbiol
4(8):629–636
Pitout JDD (2010) The latest threat in the war on antimicrobial resistance. Lancet Infect Dis 10(9):
578–579
Poole K (2002) Mechanisms of bacterial biocide and antibiotics resistance. J Appl Microbiol 92:55–
64
Prashanth PA, Raveendra RS, Hari Krishna R, Ananda S, Bhagya NP, Nagabhushana BM,
Lingaraju
K,
Raja
Naika
H
(2015)
Synthesis,
characterizations,
antibacterial
and
photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J Asian
Ceramic Soc 3(3):345–351
Raba-Páez AM, Malafatti JOD, Parra-Vargas CA, Paris EC, Rincón-Joya M (2020) Effect of
tungsten doping on the structural, morphological and bactericidal properties of nanostructured
CuO. PLoS One 15(9):e0239868
Rakshit S, Ghosh S, Chall S, Mati SS, Moulik SP, Bhattacharya SC (2013) Controlled synthesis of
spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: a
cost effective and eco-friendly approach. RSC Adv 3(42):19348–19356
Rammelkamp CH, Maxon T (1942) Resistance of Staphylococcus aureus to the action of penicillin.
Proc Soc Exp Biol Med 51(3):386–389
Rice KM, Ginjupalli GK, Manne ND, Jones CB, Blough ER (2019) A review of the antimicrobial
potential of precious metal derived nanoparticle constructs. Nanotechnology 30(37):372001
Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V (2010) Understanding the toxicity of
aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180:212–
216
Roy A, Gauri SS, Bhattacharya M, Bhattacharya J (2013) Antimicrobial activity of CaO
nanoparticles. J Biomed Nanotechnol 9(9):1570–1578
27
Antimicrobial Applications of Engineered Metal-Based Nanomaterials
519